

Renewable Propane Basics

Robert M Baldwin Renewable Gas 360 Webinar November 3, 2021

What is Renewable Propane?

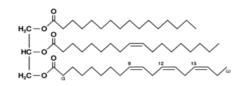
Propane => C_3H_8

Fossil Propane: Carbon atoms from Fossil sources

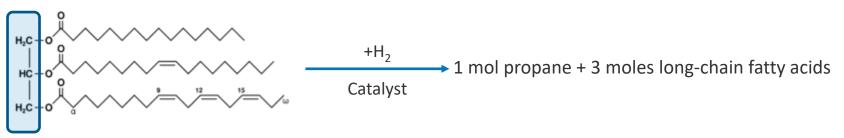
- Natural gas
- Crude oil (associated natural gas)
- By-product from crude petroleum oil refinery operations

Renewable Propane (RP): Carbon atoms from renewable feedstocks

- Identical to fossil propane (drop-in)
- Produced as by-product from HEFA¹ renewable diesel and SAF² plants
 - 200,000 tons per year global production
- Current HEFA feedstocks include fats, oils, greases (FOGs)

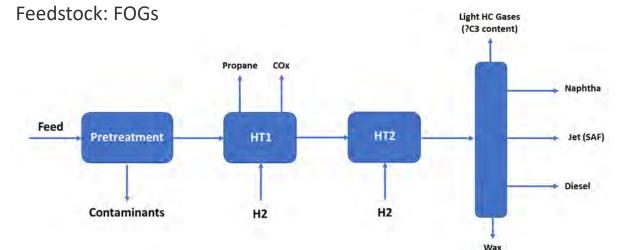


^{1.} HEFA = hydrogenated esters & fatty acids


^{2.} SAF = sustainable aviation fuel

HEFA Technology

- HEFA = hydrogenated esters and fatty acids
- HEFA Feedstocks contain triglycerides (TAGs)
 - Vegetable & plant oils (palm, soybean)
 - Animal fats (tallow)
 - Used cooking oil



- Propane produced as by-product of TAG hydrocracking
 - Commercial technology (UOP, Neste, Syntroleum)
 - Yield of RP ≈ 5wt% based on FOG

Feedstocks and Current Sources of RP

- Current US production of RP ≈ 10.5M gallons/year
- Production plants (USA)
 - 1. REG, Geismar LA & Valero Diamond Green, Norco LA
 - Technology: HEFA produces primarily renewable diesel
 - Feedstock: FOGs
 - 2. World Energy (formerly Alt Air), Paramount CA
 - Technology: HEFA produces primarily Sustainable Aviation Fuel

Future Sources, USA

	Current	Expansion (2021)	New construction (2021)	2024
RD/SAF	485M GPY	736M GPY	720M GPY	1,941M GPY
Biodiesel	2,539M GPY		90M GPY	

Assuming all expansion and new construction projects are complete by 2024, nearly 2 billion gallons per year of RD/SAF will be commercially available => Huge increase (4X) in availability of RP possible <=

N.B. - Max FOGs currently available ≈ 1.4 billion gallons per year Potential feedstock gap of 500 million GPY exists in 3 years

TechnoEconomics

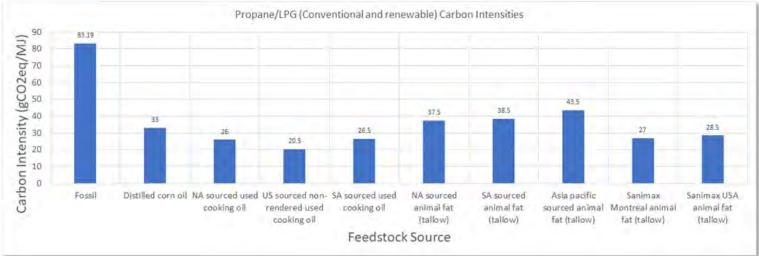
Biorefinery operator options

- Use as fuel gas
- Separate from fuel gas stream and sell
 - additional CAPEX and OPEX for RP recovery
 - need to supplement for plant energy requirements (fossil natural gas?)
 - storage & transportation costs not insignificant
 - RIN and LCFS credits could be major economic drivers

RIN Credits

- According to EPA: RP eligible for RIN credits
 - D4/D5 RINs if GHG reduction >50% compared to fossil
 - ≈ \$1.80/gallon if using September 2021 D5 RIN

LCFS Credits (CA only)


- Depends on carbon intensity of product
 - Strong functions of pathway and feedstock
 - Economic benefits substantial

Why is Feedstock Important?

Carbon Intensity (CI) of RP strong function of feedstock

- LCFS (CA) and other carbon credits
- Significant controversies in feedstock CIs exist
 - Tallow: $CI \approx 19 \text{ gCO2e/MJ}$ (at plant gate) or ≈ 187 (at the cow)

CARB data for RP from non-food feedstocks

Next-gen RP Pathways

Lowest carbon intensities for RP from cellulosics (and food waste)

Pathways from cellulosics (forestry & ag residues, other waste C)

- Biochemical; cellulosic sugars => hydrocarbons
- Thermochemical liquefaction
 - Pyrolysis => bio-oil => upgrading to fuels and chemicals
 - Hydrothermal liquefaction => bio-crude => upgrading to fuels and chemicals
- Thermochemical gasification => syngas => catalytic upgrading
 - Methanol-to-olefins (UOP & Lurgi MTO[®] technology)
- Hybrid (e.g., gasification + syngas fermentation)

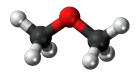
Direct conversion of CO₂ using 'green' electricity (E-2-M, P-T-X)

- Direct air capture
- Waste carbon streams (corn ethanol fermenters, power plants, etc.)

<u>Other</u>

- Anaerobic Digestion upgrading volatile fatty acids from arrested methanogenesis
 - Pathways with very low CI exist

Other Pathways


NREL | 9

Question: What about DME?

DME (Dimethyl ether)

Dimethyl ether => C_2H_6O

Not the same (chemically) as propane – contains oxygen

No natural sources of any significance – mostly synthetic in origin

- Commercially made by dehydration of methanol (2CH₃OH \rightarrow C₂H₆O + H₂O)
- Also from synthesis gas (CO + H₂)

Shares many properties with propane

- Liquefiable at room temperature and modest pressure (75 psi)
- LHV = $59.1 \text{ MJ/nM}^3 \text{ vs } 91 \text{ for propane}$
- Widely used in Europe as a diesel fuel blendstock

Excellent precursor for synthesis of biofuels (HOG¹ and SAF)

Thank You

www.nrel.gov

robert.baldwin@nrel.gov

